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Introduction 

     After descriptive statistics, where one gets a clear picture of the data and any trends indicated 

by the data, probability is the next branch of statistics.   Probability is concerned with predicting 

how likely a certain event is to occur. This area of mathematics is used in all facets of modern 

life from political predictions, to marketing, to quantum mechanics. This predictive aspect of 

statistics is one of the primary reasons people study statistics.  Before we can delve deeply into 

probability a few concepts must be understood.   

What is Probability 

       The first task is to define what probability is. In simplest terms it is a ratio between the 

number of outcomes of interest divided by the number of possible outcomes.  For example if I 

have a deck of cards consisting of  52 cards, made up of 4 suits of 13 cards each, the probability 

of pulling a card of a given suit is 13/52 or ¼ = .25 (Aczel 1999).  Probabilities are always 

between zero and one.  Zero indicates absolutely no chance of an event occurring. For example if 

I have removed all thirteen clubs from a deck, the odds of then pulling a club are zero.  A 

probability of 1.0 indicates the event is certain. For example if I remove all the cards except for 

hearts, then the probability of drawing a heart is 1.0. 

Basic Set Theory 

    Probability often uses set theory, therefore a basic understanding of the essentials of set theory 

is necessary before we can continue. Let us begin by stating that a set is simply a collection of 

elements.  An empty set is one containing no elements, and the universal set is the set containing 

all elements in a given context denoted by S (Gullberg 1997). The compliment of a set is the set 
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containing all the members of the universe set that are not in set A.  This is denoted by a capital 

A with a bar over it or by Ac 

     Now let us briefly look at relationships between sets.  First we have the union of two sets, 

denoted by A U B. The union is the set of all elements that exist in either of the two sets.  For 

example if set A contains {1,2, 5} and set B contains {8,4,2} then the union of the two sets is 

{1,2,4,5,8}.  The intersection of two sets is the set of elements contained in both sets. It is much 

like the binary operation OR. In our preceding example the intersection of set A and B would 

simply be {2}. The compliment of a set are all elements of the universal set that are not members 

of the set in question(Stoll 1979).   

      This is just a very elementary introduction to set theory, however it will come into play very 

briefly when we discuss dependent probability. 

Basic Probability 

     In the introduction to this paper we discussed essentially what probability is.  A technical 

definition would be “ Probability is a measure of uncertainty. The probability of event A is a 

numerical measure of the likelihood of the event’s occurring”(Aczel 1999). We also pointed out 

that the probability of an event must lie between zero and one.  It should also be noted that there 

exist other basic probability rules we must consider 

Basic probability Rules 

The probability of any event will be between zero and one, 0 <= P <= 1.0. • 

• Probability of the complement of an event (remember that set theory plays a role in 

probability) is equal to 1- probability of the event.  Or put another way: P( ) = 1 - P(A). 

What this means is that if the probability of a given event A is .45, then its compliment is 

1 - .45 or .55 
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Rule of unions: The probability of a union of events  s the probability of event A plus the 

probability of event B minus the probability of their intersection (or joint probability). 

• 

• 

• 

Joint probability of independent events: This is simply the probability of event A 

multiplied by the probability of event B. 

              P(A and B) = P(A) * P(B) 

                 So if two events are independent and event A has a probability of .45 and event B has 

            A probability of .85 then the probability of both events occurring is .45 * .85 =.3825 

For two mutually exclusive events the probability of their union is simply the probability 

of event A + the probability of event B.  P(A U B) = P(A) + P(B) 

     These basic rules are important to probability and should be committed to memory by any 

student who wishes to successfully study probability. 

Conditional Probability 

    Conditional probability refers to the likelihood of an event occurring given some other event 

occurring. The likelihood of event A occurring, given event B has occurred is equal to the 

probability of the intersection of event A and B divided by the probability of event B, or: 

 

     This rule obviously is not referring to situations where event B must follow A, but where 

event A can lead to event B. For example if it is cold there is a certain probability that I will wear 

a jacket, but it does not absolutely follow that I will wear a jacket.   Consider the following table 

(Jones 2004) 

The question, "Do you smoke?" was asked of 100 people. Results are shown in the table.  

. Yes No Total 
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Male 19 41 60 

Female 12 28 40 

Total 31 69 100 

 

• What is the probability of a randomly selected individual being a male who smokes? This 

is just a joint probability. The number of "Male and Smoke" divided by the total = 19/100 = 0.19  

• What is the probability of a randomly selected individual being a male? This is the total 

for male divided by the total = 60/100 = 0.60. Since no mention is made of smoking or not 

smoking, it includes all the cases.  

• What is the probability of a randomly selected individual smoking? Again, since no 

mention is made of gender, this is a marginal probability, the total who smoke divided by the 

total = 31/100 = 0.31.  

• What is the probability of a randomly selected male smoking? This time, you're told that 

you have a male - think of stratified sampling. What is the probability that the male smokes? 

Well, 19 males smoke out of 60 males, so 19/60 = 0.31666...  

• What is the probability that a randomly selected smoker is male? This time, you're told 

that you have a smoker and asked to find the probability that the smoker is also male. There are 

19 male smokers out of 31 total smokers, so 19/31 = 0.6129 (approx)  

Independent events 

    Independent events are events whose probability has no relationship at all.  Put another way, 

two events are independent if the following are true (and conversely the following statements are 

true if the two events are independent): 

P (A | B) = P(A) • 

• P (B | A) = P(B) 
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     The intersection of two or more independent events is just the product of their separate 

probabilities.   

Bayes Theorem  

     Thomas Bayes was a clergymen in the 18th century whose work has been very influential in 

statistics and probability. Bayes's Theorem is a mathematical formula used for calculating 

conditional probabilities. It is the basis Bayesian approaches to epistemology, statistics, and 

inductive logic. The Theorem's central insight is simply that a hypothesis is confirmed by any 

body data that its truth renders. The probability of a hypothesis H conditional on a given body of 

data E is the ratio of the unconditional probability of the conjunction of the hypothesis with the 

data to the unconditional probability of the data alone.  

Definition. 

The probability of H conditional on E is defined as PE(H) = P(H & E)/P(E), provided that 

both terms of this ratio exist and P(E) > 0. 

        That definition may seem a bit convoluted to the novice, so lets illustrate it with an 

hypothetical example. Assume a randomly chosen American who was alive on January 1, 2000. 

According to the United States Center for Disease Control, roughly 2.4 million of the 275 

million Americans alive on that date died during the 2000 calendar year. Among the 

approximately 16.6 million senior citizens (age 75 or greater) about 1.36 million died. Now 

consider our hypothesis that our subject died during the 2000 caldendar year.  Essentially the 

unconditional probability of the hypothesis that our subject died during 2000, H, is just the 

population-wide mortality rate P(H) = 2.4M/275M = 0.00873. To find the probability of J. Doe's 

death conditional on the information, E, that he was a senior citizen we must divide the sample 

space into two different areas (though more than two can be used). We divide the probability that 
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he or she was a senior who died, P(H & E) = 1.36M/275M = 0.00495, by the probability that he 

or she was a senior citizen, P(E) = 16.6M/275M = 0.06036. Thus, the probability of our subjects 

death given that he was a senior citizen is PE(H) = P(H & E)/P(E) = 0.00495/0.06036 = 0.082. 

Notice how the size of the total population factors out of this equation, so that PE(H) is just the 

proportion of seniors who died. Bayes theory allows us to work with conditional probabilities 

more efficiently. Expressed as a formula, Bayes theory is 

PE(H) = [P(H)/P(E)] PH(E) 

      A baysian examination of conditional probability allows one to evaluate the predictive value 

of certain factors. Statisticians refer to the inverse probability PH(E) as the "likelihood" of H on 

E. It expresses the degree to which the hypothesis predicts the data given the background 

information codified in the probability P (Joyce 2003).  In the example discussed above, the 

condition that our subject died during 2000 is a fairly strong predictor of senior citizenship. 

Indeed, the equation PH(E) = 0.57 tells us that 57% of the total deaths occurred among seniors 

that year. Bayes's theorem lets us use this information to compute the probability of our subject 

dying given that he was a senior citizen. We do this by multiplying the "prediction term" PH(E) 

by the ratio of the total number of deaths in the population to the number of senior citizens in the 

population, P(H)/P(E) = 2.4M/16.6M = 0.144. The result is PE(H) = 0.57 × 0.144 = 0.082, just as 

expected. 

      Bayes's Theorem is of value in calculating conditional probabilities because inverse 

probabilities are typically both easier to ascertain and less subjective than direct probabilities. 

People with different views about the unconditional probabilities of E and H often disagree about 

E's value as an indicator of H. Even so, they can agree about the degree to which the hypothesis 

predicts the data if they know any of the following intersubjectively available facts: (a) E's 
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objective probability given H, (b) the frequency with which events like E will occur if H is true, 

or (c) the fact that H logically entails E. Scientists often design experiments so that likelihoods 

can be known in one of these "objective" ways. Bayes's Theorem then ensures that any dispute 

about the significance of the experimental results can be traced to "subjective" disagreements 

about the unconditional probabilities of H and E.  

When both PH(E) and P~H(E) are known an experimenter need not even know E's probability to 

determine a value for PE(H) using Bayes's Theorem.  

Bayes's Theorem (2nd form): 

PE(H) = P(H)PH(E) / [P(H)PH(E) + P(~H)P~H(E)] 

    In this form Bayes's theorem is particularly useful for inferring causes from their effects since 

it is often fairly easy to discern the probability of an effect given the presence or absence of a 

putative cause.  

Special Forms of Bayes's Theorem 

     Bayes's Theorem can be expressed in a several differant forms. Each is useful for different 

purposes. One version employs what is often called the relevance quotient or probability ratio. 

This is the factor PR(H, E) = PE(H)/P(H) by which H's unconditional probability must be 

multiplied to get its probability conditional on E. Bayes's Theorem is equivalent to a simple 

symmetry principle for probability ratios.  

Probability Ratio Rule:  PR(H, E) = PR(E, H) 

     The term on the right provides one measure of the degree to which H predicts E. If we think 

of P(E) as expressing the "baseline" predictability of E given the background information 

codified in P, and of PH(E) as E's predictability when H is added to this background, then PR(E, 

H) captures the degree to which knowing H makes E more or less predictable relative to the 
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baseline: PR(E, H) = 0 means that H categorically predicts ~E; PR(E, H) = 1 means that adding 

H does not alter the baseline prediction at all; PR(E, H) = 1/P(E) means that H categorically 

predicts E.  

     Another commonly encountered form of Bayes's Theorem is referred to as Odds Rule. In 

popular terminology, the "odds" of a hypothesis is its probability divided by the probability of its 

negation: O(H) = P(H)/P(~H). So, for example, a football team whose odds of winning a 

particular race are 8-to-2 has a 8/10 chance of winning and a 2/10 chance of losing. Contrary to 

popular thought, probability and odds are not necessarily the same. 

Odds Ratio Rule. OR(H, E) = PH(E)/P~H(E) 

The Central Limit Theorem 

     Some texts will discuss the central limit theorem along with descriptive statistics, but this is a 

mistake. As you will see it clearly is most applicable to probability. The central limit theorem 

states that given a distribution with a mean m and variance s2, the sampling distribution of the 

mean approaches a normal distribution with a mean and variance/N as N, the sample size, 

increases. The central limit theorem explains why many distributions tend to be close to the 

normal distribution. 

      Lets consider a hypothetical example. Consider a set of independent random variables X1, 

X2, …XN.  Let each X have an arbitrary probability distribution with mean 

and a variance . Then the normal form of the variable X   

 
 

    has a limiting cumulative distribution function which approaches a normal distribution.  
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Poisson Process 

    The Poisson process is named after Simeon Poisson, and is one of the most important random 

processes in probability theory (Seigrest 2004). It is widely used to model random points in time 

and space, such as the times of radioactive emissions. Several important probability distributions 

arise naturally from the Poisson process including the Poisson distribution, the exponential 

distribution, and the gamma distribution. The process is used as a foundation for building a 

number of other, more complicated random processes. A Poisson process is a process satisfying 

the following properties:  

1. The numbers of changes in nonoverlapping intervals are independent for all intervals.  

2. The probability of exactly one change in a sufficiently small interval  

     is , where is the probability of one change and n is the number of 

trials.  

3. The probability of two or more changes in a sufficiently small interval h is essentially 0.  

In the limit of the number of trials becoming large, the resulting distribution is called a Poisson 

distribution 

     Consider a process in which certain points occur randomly in time. The phrase points in time 

is generic and could represent any activity such as The times when a piece of radioactive 

material emits particles. It turns out that under some basic assumptions that deal with 

independence and uniformity in time, a single, one-parameter probability model governs all such 

random processes. Because of this fact the Poisson process is one of the most important in 

probability theory. 
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     In the limit of the number of trials becoming large, the resulting distribution is called a 

Poisson distribution. Given a Poisson process, the probability of obtaining exactly n successes in 

N trials is given by the limit of a binomial distribution 

 

Viewing the distribution as a function of the expected number of successes 

 

instead of the sample size N for fixed p, equation (2) then becomes 

 

Letting the sample size N become large, the distribution then approaches 

   

   
 

   
 

   
 

   
 

which is known as the Poisson distribution (Weisstein 2004). Note that the sample size N has 

completely dropped out of the probability function, which has the same functional form for all 

values of . 

As expected, the Poisson distribution is normalized so that the sum of probabilities equals 1, 

since 
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The ratio of probabilities is given by  

 

The Poisson distribution reaches a maximum when  

 
 

where is the Euler-Mascheroni constant (note this constant is of particular interest in number 

theory, you can learn more about it at http://en.wikipedia.org/wiki/Euler-Mascheroni_constant) 

and is a harmonic number, leading to the transcendental equation 

 

Markov Chains/Processes 

     A Markov chain is a discrete-time stochastic process (note In the mathematics of probability, 

a stochastic process is a random function. For more details see 

http://en.wikipedia.org/wiki/Stochastic_process) with the Markov property. The Markov 

property is essentially that the distant past is irrelevant given knowledge of the recent past.  

These chains are named after A.A. Markov, who produced the first results (1906) for these 

processes 
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     A Markov chain is a sequence X1, X2, X3, ... of random variables. The range of these variables, 

is called the state space, the value of Xn being the state of the process at time n. If the conditional 

probability distribution of Xn+1 on past states is a function of Xn alone, then: 

 

Where x is some state of the process. The identity above identifies the Markov property.  

    Perhaps a simpler way to put this is to say that a Markov process is A random process whose 

future probabilities are determined by its most recent values. A stochastic process x(t) is called 

Markov if for every n and  

 

 

 

we have  

 

This is equivalent to  
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